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1. Introduction

In this paper we discuss the so-called limit case of the minimax principle in the
nonsmooth critical point theory from the point of view of effective applications
to nonsmooth boundary value problems.
Let f � X→ �−��+�� be a function (the values ±� are admitted) on a real

reflexive Banach space X. Consider a compact topological submanifold Q of X
with nonempty boundary �Q (in the sense of manifolds) and a nonempty closed
subset S of X. Corresponding to the sets Q and S we introduce the numbers

a�= inf
S
f � (1)

b �= sup
�∗∈∗

inf
x∈S

f ��∗�x��� (2)

c �= inf
�∈
sup
x∈Q

f ���x��� (3)

where

 ∗=��∗ ∈C�X�X�� �∗ homeomorphism� �∗	�Q= id�Q� (4)

and

=��∈C�Q�X�� �	�Q= id�Q�� (5)
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We note from (1), (2) and (4) that a�b. In order to compare b and c we
assume the following linking condition for Q and S�

�Q∩S=∅ and ��Q�∩S �=∅� ∀�∈� (6)

Then from (2)–(6) we see that b�c. Indeed, for arbitrary elements �∈ and
�∗ ∈ ∗ we have that ��∗�−1��∈ and there is some z∈Q with ��∗�−1���z��∈S.
It follows that

inf
x∈S

f ��∗�x���f ��∗���∗�−1���z����=f ���z���sup
x∈Q

f ���x���

which yields b�c. Therefore one has

a�b�c� (7)

An important feature of relation (7) is that the number b can be viewed as
a dual expression of number c (see (2), (3)). This duality will be exploited in
Section 2. The situation of equality a=c in (7) (a fortiori, a=b=c) is called the
limit case. The nonsmooth boundary value problems studied in Section 3 address
this case.
Our main results deal with a function f � X→�∪�+�� satisfying the structure

hypothesis

�Hf � f =�+�, where �� X→� is locally Lipschitz and �� X→�∪�+�� is
convex, proper (i.e., �≡+�) and lower semicontinuous.

To develop our duality approach, we are concerned in Section 2 also with func-
tionals g� X→�∪�−�� satisfying

�H̃g� g=�+�, where �� X→� is locally Lipschitz and �� X→�∪�−�� is
concave, proper (i.e., �≡−�) and upper semicontinuous.

For the class of nonsmooth functionals �Hf � we give the basic notions of critical
point and Palais-Smale condition.

DEFINITION 1 (Motreanu and Panagiotopoulos [8], p. 64). An element u∈X is
called a critical point of f =�+�� X→�∪�+�� satisfying �Hf � if

�0�u�v−u�+��v�−��u��0� ∀v∈X�

The notation �0 stands for the generalized directional derivative of � in the sense
of Clarke [5], p. 25, that is

�0�u�v�= limsup
w→u�t→0+

1
t
���w+tv�−��w��� ∀u�v∈X�
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DEFINITION 2 (Marano and Motreanu [7]). The functional f =�+�� X→
�∪�+�� satisfying �Hf � verifies the Palais-Smale condition around the set S⊂X
at level r ∈� if
�PS�f �S�r Every sequence �un� in X such that d�un�S�→0� f �un�→r and

�0�un�v−un�+��v�−��un��−%n�v−un�� ∀n�1� v∈X�

for some �%n�⊂�+ with %n→0+, contains a (strongly) convergent
subsequence.

If �=0, Definitions 1 and 2 reduce to the corresponding notions in the critical
point theory for locally Lipschitz functions as introduced by Chang [4]. If �∈
C1�X� and � is as in �Hf �, Definitions 1 and 2 become the ones in the nonsmooth
critical point theory of Szulkin [12].
Some further notations are needed. For any r ∈�, we denote fr =�x∈X� f �x��

r� and f r =�x∈X� f �x��r�. For a function f � X→�∪�+�� satisfying �Hf �
the set of critical points (in the sense of Definition 1) at level r ∈� is denoted by
Kr�f �, that is

Kr�f �=�u∈X� f �u�=r and

u is a critical point of f in the sense of Definition 1��

For any '>0, the closed '-neighborhood of the set S in X is denoted by N'�S�,
i.e. N'�S�=�x∈X� d�x�S��'�. The domain of the convex function �� X→
�∪�+�� in �Hf � is denoted D�, i.e., D�=�x∈X� ��x�<+��.

The minimax principle in the limit case (i.e., c=a in (7)) for the functionals
satisfying �Hf � is the following.

THEOREM 1 (Marano and Motreanu [7]). Suppose that the conditions �Hf � and
(6) hold. If, in addition,

�f1� supQ f <+� and �Q⊂fa;
�f2� c=a;
�f3� �PS�f �S�a;
�f4� N%0

�S�⊂D� and the set N'�S�∩f a−'∩fa+' is closed, ∀'∈�0�%0�, for some
%0>0,

then one has Ka�f �∩S �=∅.

Notice that under the assumptions of Theorem 1 relation (7) becomes the limit
case

a=b=c∈� (8)
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and the common value in (8) is a critical value of f , i.e. there exists a critical
point u∈X of f satisfying f �u�=a. Moreover, Theorem 1 provides the important
information that the critical point u∈X is located on S.
The rest of the paper is organized as follows. In Section 2, by weakening the

assumption �f2� to have b=a, we present a minimax principle ensuring that b
(the “dual” value to c) is a critical value of f . This can be viewed as a dual
result with respect to Theorem 1. Section 3 is devoted to effective applications
of the minimax principle in the limit case c=a to boundary value problems with
discontinuous nonlinearities and unbounded constraints both in non-resonant and
resonant cases.

2. A Dual Minimax Principle

To establish a minimax result, dual to Theorem 1, in the case a=b, we need
the deformation lemma in [7] for functions g� X→�∪�−�� belonging to the
class �H̃g� (see Section 1). Some preliminaries are necessary. Given d∈� and
the function g=�+�� X→�∪�−�� satisfying �H̃g� we denote

K̃d�g�� =�u∈X� g�u�=d and � 0�u�u−v�+��u�−��v��0� ∀v∈X�

and D�� =�x∈X� ��x�>−��.
We say that a function g� X→�∪�−�� satisfying �H̃g� verifies the condition

�P̃S�g�B�d for a subset B⊂X and a number d∈� if
�P̃S�g�B�d Each sequence �xn�⊂X such that d�xn�B�→0, g�xn�→d and

� 0�xn�xn−x�+��xn�−��x��−%n�xn−x�� ∀n�1� x∈X�

where %n→0+, possesses a (strongly) convergent subsequence.
In the sequel we need the following deformation result.

LEMMA 1 (Marano and Motreanu [7]). Let a function g=�+�� X→�∪
�−��, two nonempty closed subsets A, B of X and a number d∈� satisfy �H̃g�,
�P̃S�g�B�d,

�g1� A∩B=∅, A⊂gd, B⊂gd, K̃d�g�∩B=∅,
�g2� there exists %0>0 such that N%0

�B�⊂D� and the set N'�B�∩gd−'∩gd+' is
closed, ∀'∈�0�%0�.
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Then there exist %>0 and a homeomorphism /� X→X with the properties:

(i) /�x�=x�∀x∈A;
(ii) /�B�⊂gd−%.

We state now our minimax principle in the case a=b (see (1), (2)).

THEOREM 2. Assume that the function f � X→�∪�+��, the compact topolog-
ical submanifold Q of X with nonempty boundary �Q (in the sense of manifolds)
and the nonempty closed subset S of X satisfy �Hf �, �6�, �f1�, �f3�, �f4� and

�f ′2� a=b�

Then one has Ka�f �∩S �=∅.
Proof. First we note that thanks to �f1� and �f

′
2� we have that a=b∈�. Arguing

by contradiction, suppose that Ka�f �∩S=∅. Consider the function g=−f � X→
�∪�−��. Since f verifies �Hf �, then g satisfies �H̃g�, with � �=−� and
��=−�.
Let A=�Q, B=S and d=−a. To check �P̃S�g�B�d, let �xn�⊂X be a sequence

such that d�xn�B�→0, g�xn�→d and

� 0�xn�xn−x�+��xn�−��x��−%n�xn−x�� ∀n�1� x∈X�

with %n→0+. These read as d�xn�S�→0, f �xn�→a and

�0�xn�x−xn�+��x�−��xn��−%n�x−xn�� ∀n�1� x∈X�

By �f3�, we infer that the sequence �xn� has a strongly convergent subsequence,
so property �P̃S�g�B�d holds.
By �f1�, we have that �Q⊂gd. Since S⊂f a it follows that S⊂gd. Moreover,

K̃d�g�∩B=∅ because Ka�f �∩S=∅ and K̃d�g�=Ka�f �. Thus condition �g1� is
verified. Since the set

N'�B�∩gd−'∩gd+'=N'�B�∩f a−'∩fa+'� ∀'∈�0�%0��

is closed in view of assumption �f4�, condition �g2� is fulfilled.
Consequently, we can apply Lemma 1. We find a number %>0 and a

homeomorphism /� X→X such that

(i) /�x�=x�∀x∈�Q;
(ii) /�S�⊂gd−%.

Assertion (i) implies that /∈ ∗. Property (ii) expresses that

f �/�x���a+%� ∀x∈S�
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Since /∈ ∗, by �f ′2� we obtain

a= sup
�∗∈∗

inf
x∈S

f ��∗�x��� inf
x∈S

f �/�x���a+%�

This contradiction completes the proof. �

Remark 1. Taking into account the definitions of b and c in (2) and (3), respec-
tively, Theorem 2 can be regarded as a result dual to Theorem 1. Theorem 2
extends from the locally Lipschitz case to the class �Hf � the part in Theorem 3.1
of Barletta and Marano [2] addressing the situation a=b and with the linking
property considered here. Theorem 2 extends Theorem 1 because assumption �f ′2�
is more general than condition �f2� (see (7)).

3. Applications to Boundary Value Problems

We turn now to the application of Theorem 1 to boundary value problems.
These will be formulated in terms of variational-hemivariational inequalities. For
the nonsmooth variational theory of variational-hemivariational inequalities we
refer to Motreanu and Panagiotopoulos [8]. Different other results and applica-
tions of hemivariational inequalities can be found in Gao [6], Naniewicz and
Panagiotopoulos [9], Panagiotopoulos [10].
Let 0 be a nonempty, bounded domain in �N , N �3, with a C1 boundary �0.

The Hilbert space H 1
0 �0� is endowed with the scalar product

�u�v�=
∫
0
1u·1vdx� ∀u�v∈H 1

0 �0��

and the induced norm

�u�=
(∫

0
	1u	2dx

) 1
2

� ∀u∈H 1
0 �0��

Due to the continuity of embedding H 1
0 �0�⊂Lp�0� for 1�p�2∗= 2N

N−2 , there
is a constant cp>0 such that

�u�Lp�0��cp�u�� ∀u∈H 1
0 �0�� (9)

The embedding is compact for 1�p<2∗.
Consider the sequence of eigenvalues of −4 on H 1

0 �0�

0<51<52� ···�5n� ···
and a corresponding sequence �6j� of eigenfunctions{

−46j=5j6j in 0

6j=0 on �0
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normalized as follows �6j�2=1=5j�6j�2L2�0�
, ∀j�1 (see, e.g., Brézis [3]).

Let a positive integer k be fixed such that 5k<5k+1. We denote

V =span�61�����6k�� V⊥=�w∈H 1
0 �0�� �w�v�=0� ∀v∈V��

Let �� H 1
0 �0�→�∪�+�� be a convex, lower semicontinuous, proper func-

tional, let h� H 1
0 �0�→� be a locally Lipschitz function and let 5∈�5k�5k+1� be a

fixed number. Consider the following (non-resonant) variational-hemivariational
inequality problem:

�P1� Find u∈D�⊂H 1
0 �0� such that

−
∫
0
1u�x�·1�v−u��x�dx+5

∫
0
u�x��v�x�−u�x��dx

�h0�u�v−u�+��v�−��u�� ∀v∈D��

We assume that � and h satisfy:

�j1� D� is closed and there exist r >0 and 0<%<r such that

�u∈H 1
0 �0�� r−%<�u�<r+%�⊂D��

�j2� h�u�+��u��− 1
2

(
1− 5

5k+1

)
r2� ∀u∈V⊥� �u�=r , with r >0 prescribed in

�j1�;
�j3� there exists ;>r , for r >0 in �j1�, such that for all u=u1+t6k+1, u1∈V ,

�u1��;, t∈ �0�;� one has

h�u�+��u��
1
2

(
5

5k

−1
)
�u1�2−

1
2

(
1− 5

5k+1

)
t2�

�j4� limsup
n→�

h0�un�u−un��0 whenever un⇀u in H 1
0 �0�.

Our result in studying problem �P1� is the following.

THEOREM 3. Assume �j1�–�j4�. Then problem �P1� has at least a solution
u∈H 1

0 �0� satisfying u∈V⊥ and �u�=r . In addition, we have

�5/2��u�2
L2�0�

−h�u�−��u�=r2/2�

Proof. Consider the functional f =�+�� H 1
0 �0�→�∪�+��, with ��

H 1
0 �0�→� given by

��v�= 1
2

(�v�2−5�v�2
L2�0�

)+h�v�� ∀v∈H 1
0 �0�� (10)
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Since � is locally Lipschitz, the structure of f =�+� complies with hypothesis
�Hf �.
With ; and r fixed by hypotheses �j1�–�j3�, we define

Q=(
V ∩B;

)⊕�0�;6k+1� and S=�Br∩V⊥� (11)

where Br =�v∈H 1
0 �0�� �v�<r� and �Br =�v∈H 1

0 �0�� �v�=r�.
Since r <;, the compact topological manifold Q and the closed set S satisfy (6)

(see Ambrosetti [1, Lemma 4.1] or Rabinowitz [11, Proposition 5.9]). Every u∈Q
can be expressed as u=u1+u2, with u1=

∑k
i=1 ti6i∈V and u2= t6k+1, where

t1�����tk∈�, �u1��;, t∈ �0�;�. Then using (10) and �j3� we have

f �u�= 1
2

k∑
i=1

(
1− 5

5i

)
t2i +

1
2

(
1− 5

5k+1

)
t2+h�u�+��u�

�
1
2

(
1− 5

5k

)
�u1�2+

1
2

(
1− 5

5k+1

)
t2+h�u�+��u��0�

Thus we have shown that Q⊂f0, hence �Q⊂f0, which ensures �f1� with a=0.
Taking into account (11), if u∈S we have that �u�=r and u=∑+�

i=k+1 ti6i,
with ti∈�, ∀i�k+1. Then using (10) and �j2�, it results

f �u�= 1
2

+�∑
i=k+1

(
1− 5

5i

)
t2i +h�u�+��u��

1
2

(
1− 5

5k+1

)
r2+h�u�+��u��0�

By (1), this means that a= infS f �0. In view of (3) and (7), we find that

0�a�c= inf
�∈
sup
z∈Q

f ���z���sup
z∈Q

f �z��0�

so �f2� is satisfied with a=c=0.
To show �f3�, i.e. �PS�f �S�a with a=0, let the sequence �un�⊂H 1

0 �0� satisfy
d�un�S�→0, f �un�→0 and

�0�un�v−un�+��v�−��un��−%n�v−un�� ∀n�1� v∈D�� (12)

where %n→0+. Since d�un�S�→0 and S is a bounded set, the sequence �un� is
bounded in H 1

0 �0�. Then, along a relabelled subsequence, we may assume that
un⇀u in H 1

0 �0� and un→u in L2�0�, with u∈D� (since un∈D� and, by �j1�,
D� is a closed convex set). Setting v=u in (12) we derive that

�un�2�
∫
0
1un�x�·1u�x�dx−5

∫
0
un�x��u�x�−un�x��dx+

+h0�un�u−un�+��u�−��un�+%n�un−u�� ∀n�1�
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Using �j4� and the lower semicontinuity of � we can pass to the limit for obtaining

limsup
n→+�

�un�2��u�2+limsup
n→+�

h0�un�u−un�+��u�−liminf
n→+�

��un���u�2�

This ensures that un→u in H 1
0 �0�, thus �f3� is verified (with a=0).

Taking 0<%0<% (with % in �j1�), we obtain from �j1� that N%0
�S�⊂ intD�.

Moreover, for any '∈�0�%0� we have that N'�S�∩f−'∩f' is closed in H 1
0 �0�

since �	 intD�
is continuous. Thus �f4� holds true.

We may apply Theorem 1. The proof is complete by pointing out that every
critical point of the functional f =�+�, with � given in (10), is a solution to
problem �P1� satisfying f �u�=0 and the location property u∈S=�Br∩V⊥. �

Remark 2. The above proof ensures that for every s∈�0�r� (with r in �j1�) there
exists a solution us of �P1� lying in �Bs∩V⊥. Therefore, actually this problem
possesses infinitely (even uncountably) many nontrivial solutions inside Br∩V⊥.

Remark 3. Theorem 3 remains valid if we assume 5∈ �5k�5k+1�. The proof is
the same.

We provide an example of applying Theorem 3. We use the notation

W =span�61�����6k�6k+1��

EXAMPLE 1. Let J1�J2� 0×�→� be functions such that J1�·�t��J2�·�t�� 0→
� are measurable on 0 for each t∈��J1�x�·��J2�x�·� � �→� are locally Lips-
chitz for a.e. x∈0�J1�·�0��J2�·�0�∈L1�0�. Assume that∫

0
J1�x�0�dx=−

∫
0
J2�x�0�dx�0� (13)

	z	�C�1+	t	p−1�� ∀z∈�J1�x�t�∪�J2�x�t� a.e. x∈0� ∀t∈�� (14)

for some constants C�0 and 2<p<2∗,

J1�x�t��
1
2

(
5

5k

−1
)
51t

2 a�e� x∈0� ∀t∈�� (15)

J2�x�t��−1
2

(
1− 5

5k+1

)
5k+2t

2 a�e� x∈0� ∀t∈�� (16)

with 5∈�5k�5k+1�.

Define the function h� H 1
0 �0�→� by

h�u�=
∫
0
J1�x�u1�x��dx−

1
2

(
1− 5

5k+1

)
�u2�2+

∫
0
J2�x�u3�x��dx�
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for all u=u1+u2+u3∈H 1
0 �0� with u1∈V �u2∈�6k+1 and u3∈W⊥. Taking into

account (14), the function h� vH 1
0 �0�→� is locally Lipschitz.

Let K be a closed, convex subset of H 1
0 �0� such that

W⊕�u∈W⊥� �u��r0�⊂K�

for some r0>0, and let �= IK� H
1
0 �0�→�∪�+�� denote the indicator function

of K, i.e.

IK�u�=
{
0 if u∈K

+� otherwise�

We claim that conditions �j1�−�j4� in Theorem 3 are verified.
Fix an arbitrary number r ∈�0�r0� and any 0<%<min�r0−r�r�. Condition �j1�

is satisfied since Br+%⊂Br0
⊂K=D� and D� is closed.

By (13), (16) and the variational characterization of 5k+2, it follows that

h�u�+��u��−1
2

(
1− 5

5k+1

)
�u2�2−

1
2

(
1− 5

5k+1

)
5k+2�u3�2L2�0�

�−1
2

(
1− 5

5k+1

)
��u2�2+�u3�2�=−1

2

(
1− 5

5k+1

)
r2�

for every u=u2+u3∈V⊥ with u2∈�6k+1�u3∈W⊥ and �u�=r . This shows that
�j2� is true.
Relations (13) and (9) with the constant c2= 1√

51
imply that for every u=

u1+u2∈W with u1∈V �u2∈�6k+1, we have

h�u�+��u��
1
2

(
5

5k

−1
)
51�u1�2L2�0�

− 1
2

(
1− 5

5k+1

)
�u2�2

�
1
2

(
5

5k

−1
)
�u1�2−

1
2

(
1− 5

5k+1

)
�u2�2�

Condition �j3� is verified with an arbitrary ;>r .
It remains to check �j4�. Let �un�⊂H 1

0 �0� be a sequence such that un⇀u
in H 1

0 �0�, for some u∈H 1
0 �0�. Writing u=u1+u2+u3�un=u1n+u2n+u3n, with

u1�u1n∈V �u2�u2n∈�6k+1�u
3�u3n∈W⊥, we see that u1n⇀u1�u2n→u2�u3n⇀u3 in

H 1
0 �0�. Due to the growth condition in (14), we may apply Aubin-Clarke theorem
(see Clarke [5], pp. 83–85). We obtain that

h0�un�u−un��
∫
0
J 01 �x�u

1
n�x��u

1�x�−u1n�x��dx−

−
(
1− 5

5k+1

)
�u2n�u

2−u2n�+
∫
0
J 02 �x�u

3
n�x��u

3�x�−u3n�x��dx�
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Passing to lim sup as n→+� we have that
limsup
n→+�

h0�un�u−un�� limsup
n→+�

∫
0
J 01 �x�u

1
n�x��u

1�x�−u1n�x��dx+

+limsup
n→+�

∫
0
J 02 �x�u

3
n�x��u

3�x�−u3n�x��dx� (17)

By the compactness of the embedding H 1
0 �0�⊂Lp�0�, along a relabelled

subsequence we may suppose that u1n→u1�u3n→u3 in Lp�0��u1n�x�→u1�x��
u3n�x�→ u3�x� a.e. x∈0 and we can find a function g∈Lp�0� such that 	u1n�x�	�
g�x��	u3n�x�	�g�x� a.e. x∈0. Then, using (14) we have the estimate

	J 01 �x�u1n�x��u1�x�−u1n�x��	� max
C∈�J1�x�u1n�x��

	C 		u1�x�−u1n�x�	

�C�1+	u1n�x�	p−1�	u1�x�−u1n�x�	
�C�1+g�x�p−1��	u1�x�	+g�x��

a�e� x∈0�∀ n�1�

Similarly, we get

	J 02 �x�u3n�x��u3�x�−u3n�x��	
�C�1+g�x�p−1��	u3�x�	+g�x�� a�e� x∈0� ∀ n�1�

The estimates above allow to make use of Fatou’s lemma in (17). This leads to

limsup
n→+�

h0�un�u−un��
∫
0
limsup
n→+�

J 01 �x�u
1
n�x��u

1�x�−u1n�x��dx+

+
∫
0
limsup
n→+�

J 02 �x�u
3
n�x��u

3�x�−u3n�x��dx�

The upper semicontinuity of J 01 �x�·�·� and J 02 �x�·�·� ensure that assertion �j4� is
verified. Thus Theorem 3 can be applied.

The rest of the Section is devoted to a resonant problem. Let J � 0×�→� be
a function such that J�·�t�� 0→� is measurable for each t∈�, J�x�·�� �→� is
locally Lipschitz for a.e. x∈0 whose generalized gradient �J�x�t� (with respect
to the second variable t∈�� satisfies the growth condition

	z	�c1�1+	t	p−1�� ∀z∈�J�x�t� a�e� x∈0� ∀t∈�� (18)

with constants c1�0 and 2<p<2∗. Let �� H 1
0 �0�→�∪�+�� be a convex,

lower semicontinuous, proper function. Suppose that

(k1) D� is closed and there exists '>0 such that

�v1+v2∈H 1
0 �0�� v1∈V � v2∈V⊥��v1�<'�⊂D��
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(k2) there exists 0<;�', for '>0 given in �k1�, such that∫
0
J�x�v�x��dx+��v��0� ∀v∈V � �v��;�

(k3)
1
2

(
1− 5k

5k+1

)
�v�2+∫

0
J�x�v�x��dx+��v��0� ∀v∈V⊥�

(k4) liminf�v2�→+�
v2∈V⊥

1
�v2�2 �

∫
0
J�x�v1�x�+v2�x��dx+��v1+v2��>− 1

2

(
1− 5k

5k+1

)
uniformly with respect to v1∈V on bounded sets in V .

We state the following resonant problem (at the kth eigenvalue 5k of −4 on
H 1
0 �0�).

�P2� Find u∈D�⊂H 1
0 �0� such that

−
∫
0
1u�x�·1�v−u��x�dx+5k

∫
0
u�x��v�x�−u�x��dx

�

∫
0
J 0�x�u�x��v�x�−u�x��dx+��v�−��u�� ∀v∈D��

In the statement of �P2� the notation J 0 stands for the generalized directional
derivative of J (in the sense of Clarke [5]) with respect to the second variable.
Our result concerning problem �P2� is given below.

THEOREM 4. Assume that conditions �k1�–�k4� are fulfilled. Then problem �P2�
has at least a solution u∈H 1

0 �0� satisfying u∈V⊥. In addition, we have

�1/2���u�2−5k�u�2L2�0�
�+

∫
0
J�x�u�x��dx+��u�=0�

Proof. We introduce the functional f =�+�� H 1
0 �0�→�∪�+��, where

�� H 1
0 �0�→� is given by

��v�= 1
2
��v�2−5k�v�2L2�0�

�+
∫
0
J�x�v�x��dx� ∀v∈H 1

0 �0�� (19)

Due to the growth condition (18) we have that � in (19) is locally Lipschitz,
so f complies with �Hf �.
Define

Q=B;∩V � S=V⊥�

with ;>0 in (k2), where �B; is the closed ball in H 1
0 �0� centered at 0 and of

radius ;. Since V is finite dimensional, Q is a compact topological manifold
which links with the closed set S as required in (6) (see Rabinowitz [11], p. 24).
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Each u∈Q can be expressed as u=∑k
i=1 ti6i, with t1�����tk∈� . By (19) and

(k2), we have

f �u�= 1
2

k∑
i=1

(
1− 5k

5i

)
t2i +

∫
0
J�x�u�x��dx+��u��0� ∀u∈Q�

Thus �f1� in Theorem 1 holds true.
Every u∈S can be written as u=∑+�

i=k+1 ti6i, with ti∈�� ∀i�k+1. Using (19)
and �k3�, it results that

f �u�= 1
2

+�∑
i=k+1

(
1− 5k

5i

)
t2i +

∫
0
J�x�u�x��dx+��u�

�
1

2

(
1− 5k

5k+1

)
�u�2+

∫
0
J�x�u�x��dx+��u��0� ∀u∈S�

Moreover, in virture of (7), it is seen that

0�a�c= inf
�∈
sup

z∈��Q�

f �z��sup
z∈Q

f �z��0�

Consequently �f2� is satisfied with a=c=0.
Let us now check condition �f3� with a=0. Let �un�⊂H 1

0 �0� be a sequence
such that d�un�S�→0, f �un�→0 and (12) is satisfied for some %n→0+. Con-
sider the decomposition un=u1n+u2n with u1n∈V and u2n∈V⊥. The property
d�un�S�→ 0 implies that the sequence �u1n� is bounded in H

1
0 �0�. Then by (19)

we infer that

f �un��−C+ 1
2

(
1− 5k

5k+1

)
�u2n�2+

∫
0
J�x�un�x��dx+��un�� ∀n�1�

for some constant C>0. This inequality in conjunction with �k4� implies the
boundedness of �u2n� in H 1

0 �0�. Thus the sequence �un� is bounded in H 1
0 �0�.

Passing eventually to a subsequence of �un�, denoted again �un�, we may admit
that un⇀u in H 1

0 �0�, un→u in L2�0� and un�x�→u�x� a.e. x∈0. Since D�

is convex and closed (cf. (k1)), it results that D� is weakly closed, so u∈D�.
Setting v=u in (12) and taking into account relation (2) in [5], p. 77, we deduce∫

0
1un�x�·1u�x�dx−5k

∫
0
un�x��u�x�−un�x��dx+

+
∫
0
J 0�x�un�x��u�x�−un�x��dx+��u�−��un�

�−%n�un−u�+
∫
0
	1un�x�	2dx� ∀n�1�
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By the upper semicontinuity of J 0�x�·�·�, Fatou’s lemma on the basis of (18)
and the lower semicontinuity of � we get limsupn→+��un���u�. This combined
with un⇀u in H 1

0 �0� implies un→u in H 1
0 �0�. Thereby, (f3) in Theorem 1 is

valid.
Taking 0<%0<', one obtains from (k1) that

N%0
�S�=N%0

�V⊥�⊂�D1+D2∈H 1
0 �0�� v1∈V �v2∈V⊥��v1�<'�⊂D��

Finally, for each l∈�0�%0� using the fact NF�S�⊂N%0
�S�⊂ intD� and the continu-

ity of � on intD�, it results that the set Nl�S�∩f−F∩fl is closed. Condition �f4�
is thus satisfied.
Applying Theorem 1 we find a critical point u of f fulfilling u∈K0�f �∩S.

This u solves problem �P2� (see Clarke [5], pp. 83–85). �

We provide an example where Theorem 4 applies.

EXAMPLE 2. Let a function J � 0×�→� be measurable with respect to the
first variable, locally Lipschitz with respect to the second variable, satisfies the
growth condition (18) and

−d1t
2
�J�x�t��0 a�e� x∈0�∀t∈��

for some constant d1>0. Let �� H
1
0 �0�→�∪�+�� be given by

��u�=
{
d2�u2�2 if u=u1+u2 with u1∈ B̄'∩V and u2∈V⊥

+� otherwise�

with some '>0 and for a constant d2>0 satisfying

1
2

(
1− 5k

5k+1

)
+d2>

d1
51

�

It is clear that � is convex, lower semicontinuous and proper. We claim that the
assumptions of Theorem 4 are verified. Indeed, since �B'∩V �⊕V ⊥⊂D� and D�

is closed, one sees that (k1) is valid. Condition (k2) holds with ;=' because �
vanishes on B̄'∩V . The estimate

1

2

(
1− 5k

5k+1

)
�v�2+

∫
0
J�x�v�x��dx+��v�

�

[
1
2

(
1− 5k

5k+1

)
+d2−

d1
51

]
�v�2�0� ∀v∈V⊥�
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ensures that �k3� is verified according to the choice of d2. Moreover, we have∫
0
J�x�v1�x�+v2�x��dx+��v1+v2��−d1�v1+v2�2L2�0�

+d2�v2�2

�−d1
51

�v1�2+
(
d2−

d1
51

)
�v2�2� ∀v1∈V � v2∈V⊥�

Thus

liminf
�v2�→+�

v2∈V⊥

1
�v2�2

[∫
0
J�x�v1�x�+v2�x��dx+��v1+v2�

]
>−1

2

(
1− 5k

5k+1

)

uniformly with respect to v1 running in bounded subsets of V , which yields �k4�.
Therefore Theorem 4 can be applied.
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